Package: HDShOP 0.1.5
HDShOP: High-Dimensional Shrinkage Optimal Portfolios
Constructs shrinkage estimators of high-dimensional mean-variance portfolios and performs high-dimensional tests on optimality of a given portfolio. The techniques developed in Bodnar et al. (2018 <doi:10.1016/j.ejor.2017.09.028>, 2019 <doi:10.1109/TSP.2019.2929964>, 2020 <doi:10.1109/TSP.2020.3037369>, 2021 <doi:10.1080/07350015.2021.2004897>) are central to the package. They provide simple and feasible estimators and tests for optimal portfolio weights, which are applicable for 'large p and large n' situations where p is the portfolio dimension (number of stocks) and n is the sample size. The package also includes tools for constructing portfolios based on shrinkage estimators of the mean vector and covariance matrix as well as a new Bayesian estimator for the Markowitz efficient frontier recently developed by Bauder et al. (2021) <doi:10.1080/14697688.2020.1748214>.
Authors:
HDShOP_0.1.5.tar.gz
HDShOP_0.1.5.zip(r-4.5)HDShOP_0.1.5.zip(r-4.4)HDShOP_0.1.5.zip(r-4.3)
HDShOP_0.1.5.tgz(r-4.4-any)HDShOP_0.1.5.tgz(r-4.3-any)
HDShOP_0.1.5.tar.gz(r-4.5-noble)HDShOP_0.1.5.tar.gz(r-4.4-noble)
HDShOP_0.1.5.tgz(r-4.4-emscripten)HDShOP_0.1.5.tgz(r-4.3-emscripten)
HDShOP.pdf |HDShOP.html✨
HDShOP/json (API)
NEWS
# Install 'HDShOP' in R: |
install.packages('HDShOP', repos = c('https://otryakhin-dmitry.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/otryakhin-dmitry/global-minimum-variance-portfolio/issues
- SP_daily_asset_returns - Daily log-returns of selected constituents S&P500.
financial-mathematicshigh-dimensional-dataportfolio-managementshrinkage-estimators
Last updated 8 months agofrom:ef1b7a9e3b. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 22 2024 |
R-4.5-win | OK | Nov 22 2024 |
R-4.5-linux | OK | Nov 22 2024 |
R-4.4-win | OK | Nov 22 2024 |
R-4.4-mac | OK | Nov 22 2024 |
R-4.3-win | OK | Nov 22 2024 |
R-4.3-mac | OK | Nov 22 2024 |
Exports:CovarEstimCovShrinkBGP14InvCovShrinkBGP16mean_bop19mean_bsmean_jsMeanEstimMeanVar_portfolioMVShrinkPortfolionew_GMV_portfolio_weights_BDPS19new_GMV_portfolio_weights_BDPS19_pgnnew_MeanVar_portfolionew_MV_portfolio_traditionalnew_MV_portfolio_traditional_pgnnew_MV_portfolio_weights_BDOPS21new_MV_portfolio_weights_BDOPS21_pgnnonlin_shrinkLWplot_frontierRandCovMtrxSigma_sample_estimatortest_MVSPvalidate_MeanVar_portfolio